Green light perception paved the way for the diversification of GAF domain photoreceptors (Preprint)

Abstract

Photoreceptors are proteins that sense incident light and then trigger downstream signaling events. Phytochromes are linear tetrapyrrole-binding photoreceptors present in plants, algae, fungi, and various bacteria. Most phytochromes respond to red and far-red light signals. Among the phytochrome superfamily, cyanobacteria-specific cyanobacteriochromes show much more diverse optical properties covering the entire visible region. Both phytochromes and cyanobacteriochromes share the GAF domain scaffold to cradle the chromophore as the light-sensing region. It is unknown what physiological demands drove the evolution of cyanobacteriochromes in cyanobacteria. Here we utilize ancestral sequence reconstruction and report that the resurrected ancestral cyanobacteriochrome proteins reversibly respond to green and red light signals. pH titration analyses indicate that the deprotonation of the bound phycocyanobilin chromophore enables the photoreceptor to perceive green light. The ancestral cyanobacteriochromes show modest thermal reversion to the green light-absorbing form, suggesting that they evolved to sense green-rich irradiance rather than red light, which is preferentially utilized for photosynthesis. In contrast to plants and green algae, many cyanobacteria can utilize green light for photosynthesis with their special light-harvesting complexes, phycobilisomes. The evolution of green/red sensing cyanobacteriochromes may therefore have allowed ancient cyanobacteria to acclimate to different light environments by rearranging the absorption capacity of the cyanobacterial antenna complex by chromatic acclimation.

Publication
bioRxiv