Blue/green light-responsive cyanobacteriochromes are cell shade sensors in red light-replete niches (Preprint)

Abstract

Photoautotrophic cyanobacteria have developed sophisticated light response systems to capture and utilize the energy and information of incident light. Cyanobacteria-specific photoreceptors cyanobacteriochromes (CBCRs) are distantly related to more widespread phytochromes. CBCRs show the most diverse spectral properties among the naturally occurring photoreceptors, typified by a unique and prevailing blue/green light-absorbing variant. However, where the CBCR-mediated “colorful” signaling systems function in nature has been elusive. We previously reported that the three CBCRs SesA/B/C synthesize/degrade a bacterial second messenger cyclic diguanylate (c-di-GMP) in response to blue/green light. The cooperative action of SesA/B/C enables blue light-ON and green light-OFF regulation of the c-di-GMP-dependent cell aggregation of the thermophilic cyanobacterium Thermosynechococcus vulcanus. Here, we report that SesA/B/C can serve as a physiological sensor of cell density. Because cyanobacterial cells show lower transmittance of blue light than green light, higher cell density gives more green light-enriched irradiance to cells. The cell density-dependent suppression of cell aggregation under blue/green-mixed light and white light conditions support this idea. Such a sensing mechanism may provide information about the cell position in cyanobacterial mats in hot springs, the natural habitat of Thermosynechococcus. This cell position-dependent SesA/B/C-mediated regulation of cellular sessility (aggregation) might be ecophysiologically essential for the reorganization and growth of phototrophic mats. We also report that the green lightinduced dispersion of cell aggregates requires red light-driven photosynthesis. Blue/green CBCRs might work as shade detectors in a different niche than red/far-red phytochromes, which may be why CBCRs have evolved in cyanobacteria.

Publication
bioRxiv